skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Stoll, Mary_Margaret V"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Predicting the pace of acidification in the California Current System (CCS), a productive upwelling system that borders the west coast of North America, is complex because the anthropogenic contribution is intertwined with other natural sources. A central question is whether acidification in the CCS will follow the pace of increasing atmospheric CO2, or if climate effects and other biogeochemical processes will either amplify or attenuate acidification. Here, we apply the boron isotope pH proxy to cold-water orange cup corals to establish a historic level of acidification in the CCS and the Salish Sea, an associated marginal sea. Through a combination of complementary modeling and geochemical approaches, we show that the CCS and Salish Sea have experienced amplified acidification over the industrial era, driven by the interaction between anthropogenic CO2and a thermodynamic buffering effect. From this foundation, we project future acidification in the CCS under elevated CO2emissions. The projected change inpCO2over the 21stcentury will continue to outpace atmospheric CO2, posing challenges to marine ecosystems of biological, cultural, and economic importance. 
    more » « less